Effect of Joule Heating and Thermal Radiation in Flow of Third Grade Fluid over Radiative Surface

نویسندگان

  • Tasawar Hayat
  • Anum Shafiq
  • Ahmed Alsaedi
چکیده

This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

Three-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface

This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...

متن کامل

Diffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate

The main purpose of this work is to investigate the porous medium and diffusion-thermo effects on unsteady combined convection magneto hydrodynamics boundary layer flow of viscous electrically conducting fluid over a vertical permeable surface embedded in a high porous medium, in the presence of first order chemical reaction and thermal radiation. The slip boundary condition is applied at the p...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

Variable Thermal Conductivity and Thermal Radiation Effect on the Motion of a Micro Polar Fluid over an Upper Surface

The intent of this analysis is to explore the influence of thermal radiation paired with variable thermal conductivity on MHD micropolar fluid flow over an upper surface. The novelty of the present model is to consider the fluid flow along an upper horizontal surface of a paraboloid of revolution (uhspr) with the porous medium.  This physical phenomenon is described by a set of coupled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014